An inequality for generalized complete elliptic integral

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inequality for generalized complete elliptic integral

In this paper, we show an elegant inequality involving the ratio of generalized complete elliptic integrals of the first kind and generalize an interesting result of Alzer.

متن کامل

Generalized Hölder's inequality for g-integral

One extension of Hölder inequality in the frame of pseudo-analysis is given. The extension of Hölder inequality is presented for the case of g-semirings and some illustrative examples are given.

متن کامل

On an Integral Inequality

In this article we give different sufficient conditions for inequality (∫ b a f(x)dx )β ≥ ∫ b a f(x)dx to hold.

متن کامل

On the Jensen type inequality for generalized Sugeno integral

We prove necessary and sufficient conditions for the validity of Jensen type inequalities for generalized Sugeno integral. Our proofs make no appeal to the continuity of neither the fuzzy measure nor the operators. For several choices of operators, we characterize the classes of functions for which the corresponding inequalities are satisfied.

متن کامل

A Generalized Volterra-Fredholm Type Integral Inequality For Discontinuous Functions

In recent years many integral inequalities for continuous and discontinuous functions have been established, which provide handy tools for investigating the quantitative and qualitative properties of solutions of integral and differential equations [1-17]. In the investigations for integral inequalities, the idea of generalizing known integral inequalities have gained extensive attention. In [1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2017

ISSN: 1029-242X

DOI: 10.1186/s13660-017-1578-6